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SUMMARY 

As retinal illuminance is lowered, the human visual system 
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integrates the effects of photon absorptions over larger areas and 
longer times. 
changes is called Intensity-Dependent Spread (IDS). Each input point 
gives rise to a pattern of excitation that spreads to a region of 
output points, each output point delivering a signal proportional to 
the total excitation it sees. The unique aspect of the theory is the 
assumption that, although the amplitude of the excitation pattern at 
its center increases with input illuminance, its width decreases in 
such a way that its volume remains constant. 

displays a number of unexpected and potentially useful properties. 
Among them are edge enhancement and independence from scene 
illumination. 

A theory of the process that might underlie these 

Application of this theory to image processing reveals that it 

INTRODUCTION 

During the last several years, some of my colleagues and I have 
been working with an interesting image processing technique called 
Intensity-Dependent Spread, IDS (ref. 1,2). The things I will say 
here are the result of my working with Jack Yellott, Steve Reuman, 
and Greg Reese and of discussions with a lot of other people, George 
Westrom, Fred Huck, and Ellie Kurrasch to name a few. I would like 
to discuss some of the basic properties of IDS here: some of the 
papers that follow this one will present specific implementations and 
applications of the technique. 

important phenomena in human brightness perception and it has turned 
out to do remarkably well at relating a number of phenomena that had 
always before been considered quite independent of each other. But 
it quickly became evident that the theory had potential as a useful 
computer image processing algorithm too and, although I will hint at 
some of the relevant phenomena of human vision in this paper, the 
following discussion will largely be confined to IDS as an image 
processing technique. 

IDS was originally developed as a theory to explain some 
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SOME PRELIMINARIES 

The IDS model, that is, the principles underlying IDS as an 
image processor, can be stated very simply. However, for those who 
are intimate with standard image processing techniques, there are 
some pitfalls to understanding it that need attention. 
image processing procedure, for example convolving an input image 
with a difference of Gaussians to achieve "edge enhancementtg, the 
value at each output pixel is determined by operating on a set of 
corresponding input pixels, in this example applying a weighing 
function and then adding up the results. Although one can correctly 
understand the IDS procedure in that same way, I think it is much 
easier to understand it and to avoid pitfalls if one imagines the 
process as we think of optical image formation. That is, each point 
in the input (scene) delivers its signal (light) to some region of 
the output (image). This spread of signal in the image plane from a 
unit point in object space is called the Point Spread Function (PSF) .  
The image can then be considered the summation of the images of all 
the points in object space, that is, the convolution of the PSF and 
an ideal image. 

In a typical 

Now I want to introduce a new term. The PSF is the distribution 
of light in the image of a point of unit intensity. If two point 
sources are imaged and one source is twice as intense as the other, 
although it can be said that the PSF's are the same, the actual 
distributions of light in the two images are different, one being 
twice as intense as the other at every image location. To talk about 
IDS, we need a term that permits that differentiation. Here I will 
refer to the actual distribution of signal that corresponds to a 
particular input point as the Signal Spread, S S .  The S S  and the PSF 
for a given input point are only the same when the point happens to 
have unit intensity. 

In an ordinary image, the volume of the S S  equals the total 
flux emitted by the corresponding object point multiplied by a 
constant representing the proportion of emitted light captured by 
the imaging system. 

I will write that in the following peculiar way: 

(1) 
V = k*Q1 

where V is the volume of the S S ,  
Q is the number of quanta emitted by the point and 
K is the proportion of light captured by the imaging 
system. 
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THE MODEL 

The diagram at the top of Figure 1 schematizes the IDS model. 
The input is represented as a distribution of values in an array of 
input pixels. Each input pixel delivers a signal to a network, where 
the signal spreads laterally. Finally, there is an array of output 
pixels each of which simply sums all the signals that arrive in its 
vicinity from the network. In our new terminology, the SSs are 
developed in the network and the output array sums them. Further, in 
the version of the IDS model to be discussed here, the SS's are 
everywhere positive. 

If the S S ' s  were simply, say, Gaussians whose amplitudes were 
proportional to the corresponding input intensities, then this model 
would just describe ordinary linear low-pass filtering, for example, 
as would result from diffraction at the pupil of the imaging system. 
The linear model would be appropriate if all of the energy in the 
output distribution were to come directly from the input, as in an 
optical image, or perhaps with local amplification, as is true in a 
photographic image or, in effect, with a standard television image. 
The IDS model is based on a different physical notion, that the 
energy at each input point modulates the corresponding SS, and 
specifically, that the input does not determine the energy in the SS 
but instead affects the degree to which it spreads. 

Now we can state the central feature of the IDS model. Although 
the mathematical form of the SS is constant, for example, it is 
always Gaussian or conical or cylindrical, etc., its width changes 
inversely with input intensity. Specifically, in IDS processing, the 
height at the center of the SS increases when the input intensity 
increases and its width decreases in such a way that the volume of 
the SS is constant. An example for an SS of conical shape at two 
input intensities is shown at the bottom of Figure 1. The following 
equation expresses this relationship. 

(Equations (1) and (2) are written this way partly to clarify an 
important aspect of the relationship between IDS and a linear 
system, but it is also meant to suggest that it would be interesting 
to look at the consequences of using exponents other than 1 and 0.) 

That is the entire IDS model. I will just fill out two 
details. First, the height at the center of the SS is taken as some 
power function of the corresponding input strength. The simplest 
such function, which will be used in the following examples, has a 
power of one, that is, the center height is linear with input 
intensity. Second, although the specific details of the results are 
somewhat affected by the particular spread shape chosen, e.g., 
Gaussian E cylindrical, all of the general properties I will discuss 
here apply for spread functions of any shape. 



GENERAL CHARACTERISTICS OF IDS-PROCESSED IMAGES 

Applying the IDS model or process to images produces some 
Figures 2a and 2b summarize a group of results that are surprising. 

important characteristics of IDS processing. IDS is inherently a 
non-linear process (because the Point Spread Function varies with 
local intensity, superposition is not obeyed), but the curves in 
Figures 2a and 2b can be interpreted as close relatives of the MTF of 
a linear system. Here we will call these curves Contrast Sensitivity 
Functions (CSFs). Consider just one curve first, say the one labeled 
v v l O v v  in Figure 2a. This curve shows that, at a mean intensity of 10 
arbitrary units, the system acts as a bandpass filter. Therefore, 
for a step input the output will be a spatial transient, as plotted 
in Figure 3. 
enhancementvv. This is surprising because IDS involves no 
subtraction. The PSF's are everywhere positive. (If the system 
were linear, low frequency attenuation could only be achieved with a 
PSF containing some negative regions.) 

That is, IDS does what is often called "edge 

Figure 2a also shows that as the mean intensity of the input 
changes, the CSF changes, a result that can only occur in a non- 
linear system. When the mean intensity increases, the entire CSF 
shifts toward higher spatial frequencies. Specifically, when the 
center peak height of the SS is linear with input intensity, the CSF 
shifts (on a log frequency plot) in direct proportion to the square 
root of the mean intensity (2). 

The consequences of this shift are interesting. What the 
system does is automatically adjust its smoothing and spatial 
resolution in accordance with local photon noise. Suppose, for 
example, that there is a region of an optical input image that has a 
low mean irradiance, so that quantal fluctuations in that region 
render the image noisier there than in another, brighter, region. 
The SSvs in the dark region will be larger, the CSF's there will be 
shifted toward lower frequencies, and each output pixel will summate 
signals coming from a larger input region. That is, photon 
detections will be summated over a larger region of the image, 
causing increased averaging or smoothing there. 
property to have, because if a region of the image is noisy, it is 
not possible to achieve high scene resolution there anyway. High 
resolution in the processing system just reveals the noise, not the 
details of the scene. 

That is a good 

If, onthe other hand, a region of the image has a high 
irradiance so that the photon statistics support high scene 
resolution, the IDS process automatically delivers narrow PSFs there 
and thus achieves high resolution. 

The curves in Figure 2a plot the behavior of IDS for 
deterministic inputs. 
Poisson statistics of photon-matter interactions are taken into 
consideration, the result is as plotted in Figure 2b. 

When the input is an optical image and the 

At extremely 
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low intensities the I D S  process acts as a linear low-pass filter. 
This low-pass behavior is not exactly a consequence of the model 
itself, but rather will occur only when the probabilistic aspects of 
the input are extreme, as with photon-limited detection of extremely 
low light level images, and I won't discuss it further here. 
(See ref. 3 for a complete discussion). 

Figure 4 demonstrates this property of IDS graphically. 
Imagine a simple scene consisting only of two adjacent regions one 
with a reflectance of 10% and the other of 15%, the scene being 
illuminated and imaged. 
4a is a plot of the irradiance in the image of the scene when the 
scene illumination is 100,000 arbitrary units, and the upper right- 
hand curve is the resulting IDS output. The curve on the left, the 
input curve, is computed assuming that the illuminating light follows 
Poisson statistics, as all light does, and that the sensing system 
noise is negligible. Thus, the jaggedness in the left curve is the 
result of quantal fluctuations. Some of this noise is transmitted to 
the output image on the right. 

The jagged curve at the upper left in Figure 

The pair of curves in Figure 4b show what happens when the 
illumination on the scene is reduced by a factor of ten. The mean 
image irradiances on the two sides of the edge are reduced by a 
factor of ten (note that the vertical axis scale is magnified by ten 
relative to the upper left curve) and the effect of photon noise is 
relatively increased (by the square root of 10). The corresponding 
IDS output distribution is broader but not noisier. (Note that the 
vertical scale of the output signals is increased. The fact that 
the amplitude of the edge response is not changed will be discussed 
below. ) 

Moving to the curves in Figure 4c, d, e and f each successive 
curve shows the result of another ten-fold decrease in scene 
irradiance. At the lowest irradiances, individual photon detections 
are noticeable. Although the S/N of the input images obviously 
increases with decreasing scene irradiance, the noisiness of the IDS 
output does not. In fact, the S/N remains exactly constant for the 
IDS outputs, as measured either by the ratio of the mean edge 
response amplitude to the RMS value of the output away from the edge, 
or by the variance in the location of the zero crossings.[i]. Thus, 
the IDS process yields a constant S/N for images or regions of images 
whose local S/N ratio varies as a consequence of quantal 
fluctuations. 

Note that no parameters of the model were adjusted between the 
curves in Figure 4. With regard to the output S/N, there is only one 
parameter to adjust, the width of the SS at some signal input 
intensity. This value determines the S/N that will appear at the 
output. 

Figure 5 shows the IDS outputs to a series of step inputs 
similar to those in Figure 4 but where noise is negligible. 
input steps are of increasing amplitude, and any linear system will 

The 
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give output responses that correspondingly increase in amplitude. 
However, the ratios of values on the two sides of all the input steps 
in this figure are equal, 2:1, and the figure illustrates another 
important property of IDS for step inputs. 
depends exclusively on the ratio of the values across the input step. 

Now imagine that the input patterns in Figure 5 are actually 
plots of the intensity distributions in the images of a step between 
two areas, one having twice the reflectance of the other, the 
different plots corresponding to different scene illuminations (as in 
Figure 4 ) .  It is then clear that, when the amplitudes of the edge 
responses are considered, the IDS responses to edges in a scene are 
independent of the level and the uniformity of the illumination on 
the scene. 
reflectances in the scene. This property, independence from scene 
illumination, can be extremely useful when the physical properties of 
the surfaces in the scene are of interest. 
important application of this property, we can show theoretically 
that the spectral reflectances, or more loosely the "actual colors", 
of objects in a scene can be determined regardless of the color of 
the illuminant, by applying IDS processing to each of a set of 
multispectral images. We are currently working on ways to exploit 
this IDS property in processing actual multispectral images. 

The response amplitude 

They depend only on the relationships among the 

In perhaps the most 

A FEW S P E C I F I C  EXAMPLES O F  I D S  PROCESSING 

Figure 6 illustrates the action of IDS on a television image. 
Because edges produce responses of equal magnitude whether in direct 
light or deep shadow, the output image has a much larger visual 
dynamic range than the unprocessed image. 

An extreme case is shown in Figure 7. The input is a standard 
television image of a simulated space scene, using a model spacecraft 
and astronaut and simulating the intense shadows of space by careful 
baffling of the illumination. A disadvantage of IDS processing, the 
broadening of edge responses at low light levels, is also clearly 
illustrated here. Other examples of IDS processing will be given in 
other papers in this collection. 

A MODIFICATION TO PERFORM TEMPORAL PROCESSING 

In the IDS model, signals spread laterally from each input 
point. Suppose we add the postulate that this signal spread is not 
instantaneous, but rather that the signals propagate laterally with a 
constant velocity, as they might if they were carried by neurons, for 

c 1 1  These are not really zero-crossings but "base levell' crossings, 
the base level being non-zero, dependent upon an arbitrary choice of 
a particular parameter of the model, and not important. 
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example. If the propagation velocity is taken to be very high 
compared with the processing rate, then all of the resulting outputs 
are as described above. Similarly, if the input image is stationary 
and the output is displayed only after the system has reached 
equilibrium, the results will be as above. However, if it is assumed 
that the lateral spreading of the signal occurs within a time scale 
of the same order as the time to process an image, then an 
interesting set of temporal properties are manifested. 

Figure 8 plots temporal responses of the system when the input 
is a step change in the irradiance of a spatially uniform field. 
different curves are for different step amplitudes. 
suggest temporal band-pass filtering and show that, when propagation 
velocity is included, the temporal properties of IDS are closely 
analogous to its spatial properties, these curves being the temporal 
analog of the spatial edge responses in Figure 3 .  In fact, a plot of 
the response of the system to inputs of zero spatial frequency 
(spatially uniform fields) that are modulated temporally at various 
frequencies and with various mean irradiances looks very much like 
the corresponding spatial result shown in Figure 2. The system is a 
temporal band-pass filter that shifts toward higher frequencies as 
the mean irradiance increases. Thus, merely by adding the assumption 
that the signal spread occurs over time, the system then not only 
trades spatial resolution against spatial smoothing but also trades 
temporal resolution for temporal smoothing. That is, as light 
levels are reduced, the signals are automatically integrated over 
both larger areas and longer times. 

The 
The curves 

CONCLUDING REMARKS 

Certain properties of the human visual system change as the mean 
light level changes. In particular, as the light level is reduced, 
the human visual system sums the effects of detected photons over 
larger areas of the retina and over longer time intervals. The 
usefulness of that behavior in a quantum-limited detection system 
like the eye is clear. High system resolution in both the spatial 
and temporal domains is obviously useful at high light levels, but it 
is useless at low light levels because fine spatial and temporal 
detail are obscured at the input by photon statistics. To maintain a 
constant ability to detect an object over variations in illumination 
level, one must integrate over larger temporal or spatial regions, or 
both, as the illumination is lowered. 

Intensity-Dependent Spread is an algorithm that automatically 
adjusts its spatial and temporal areas of integration in inverse 
relation to the local image irradiance in such a way that, for 
quantum limited detection, the S/N is constant and independent of 
image irradiance. The same algorithm also results in band-pass 
filtering and edge wwenhancementll, and produces responses to edges 
whose amplitudes are proportional to the ratios of irradiances on the 
two sides of the edge. It thus yields an output image of a scene 
that is relatively independent of the intensity and uniformity of the 
light illuminating the scene. 
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Figure 1 A schematic representation of the components of the IDS 
theory. 
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Figure 2 (a) Contrast sensitivity functions for IDS at various mean 
irradiances, assuming deterministic inputs. (b) Contrast 
sensitivity functions for IDS when photon statistics are 
included in the simulation. The lowest mean irradiances 
are such that the probability that a pixel will detect zero 
photons is significantly greater than zero. 
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Figure 3 The I D S  response to a step or edge. 
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CONVENTIONAL IMAGING 
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Figure 4 Each curve on the left is a plot of the relative irradiance 
in the image of a scene. The scene consists of two regions 
having reflectances of 10% and 15%. The image irradiances 
are computed on the basis of Poisson statistics. The curves 
on the right are the corresponding IDS responses. In (a), 
the scene irradiance is assumed to be 10,000 arbitrary 
units, and it is reduced by a factor of ten for each 
successive pair of curves. 
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Figure 5 IDS responses to a set of deterministic step inputs, the 
ratio of image irradiances across the step being 2 : l  in all 
cases. 



Conventional imaging IDS imaging 

Figure 7 An image from a standard television camera of a scene 
simulating deep shadows in space and the 
processing. 

I 

result of IDS 

Figure 8 The responses of I D S  to a spatially uniform field 
undergoing temporal step changes in irradiance of various 
amplitudes. 
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